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A class of large scale systems, which is naturally divided into many smaller interacting subsystems, are
usually controlled by a distributed or decentralized control framework. In this paper, a novel
distributed model predictive control (MPC) is proposed for improving the performance of entire
system. In which each subsystem is controlled by a local MPC and these controllers exchange a reduced
set of information with each other by network. The optimization index of each local MPC considers not
only the performance of the corresponding subsystem but also that of its neighbours. The proposed
architecture guarantees satisfactory performance under strong interactions among subsystems. A
stability analysis is presented for the unconstrained distributed MPC and the provided stability results
can be employed for tuning the controller. Experiment of the application to accelerated cooling process

in a test rig is provided for validating the efficiency of the proposed method.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

There are class of complex large scale systems which are
composed by many physically or geographically divided subsys-
tems. Each subsystem interacts with some so called “neighbour-
ing subsystems” by their states and their inputs. The technical
target is to achieve some global performance of entire system (or
a common goal of all subsystems).

The classical centralized control solution, where a control
agent is able to acquire the information of the global system
and could obtain a good global performance, is often impractical
to apply to large scale system for some reasons: (1) there are
hundreds of inputs and outputs. It requires a large computational
efforts in online implementation; (2) when the centralized con-
troller fails, the entire system is out of control and the control
integrity cannot be guaranteed when a control component fails
and (3) in some cases, e.g. in multi-intelligent vehicle system, the
global information is unavailable to each controller.

The distributed (or decentralized) framework, where each
subsystem is controlled by an independent controller, has the
advantages of being flexible to system structure, error-tolerance,
less computational efforts and no global information requirements
(Du Xi, & Li, 2001; Vaccarini, Longhi, & Katebi, 2009). Thus the
distributed control framework is usually adopted in this class of
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system (Du, Xi, & Li, 2001; Vaccarini, Longhi, & Katebi, 2009), in
spite of that the dynamic performance of centralized framework is
better than it. On the other hand, the development of DCS, field-
bus, communication network technologies in process industries
allows the control technologies and methodologies to utilize their
potentials for improving control. Thus, how to improve the global
performance of each subsystem with the limited network com-
munication or limited available information is a valuable problem.

Model predictive control (MPC), also called receding horizon
control, is widely recognized as a high practical control technol-
ogy with high performance. Where a control action sequence is
obtained by solving, at each sampling instant, a finite horizon
open-loop receding optimization problem and the first control
action is applied to the processes (Maciejowski, 2002). It has been
applied successfully to various linear (Li, Zheng, & Wang, 2008;
Qin & Badgwell, 2003; Richalet, 1993), nonlinear (Peng, Nakano, &
Shioya, 2007; Qin & Badgwell, 2000; Xu, Li, & Cai, 2005; Zheng, Li,
& Wang, 2009) systems in the process industries and is becoming
more widespread (Lee, Kumara, & Gautam, 2008; Qin & Badgwell,
2003; Zheng, Li, & Wang, 2011). Nowadays, the distributed
framework of MPC, distributed MPC, is also gradually developing
for the control of large scale systems.

Some distributed MPC formulations are available in the litera-
tures (Camponogara, Jia, & Krogh, 2002; Dunbar, 2007; Dunbar &
Murray, 2006; Du, Xi, & Li; Keviczky, Borrelli, & Balas, 2006; Lee,
Kumara, & Gautam, 2008; Li, Zhang, & Zhu, 2005; Magni & Scattolini,
2006; Mercangoz & lii, 2007; Richards & How, 2007; Vaccarini,
Longhi, & Katebi, 2009; Venkat, Rawlings, & Wright, 2007; Venkat,
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Hiskens, & Rawlings, 2008; Zhang & Li, 2007; Zheng, Li, & Wang,
2009). Among them, the methods described in Dunbar and Murray
(2006) and Keviczky, Borrelli, and Balas (2006) are proposed for a set
of decoupled subsystems, and the extension of Dunbar and Murray
(2006) could handle systems with weakly interacting subsystem
dynamics (Dunbar, 2007). For large-scale linear time-invariant (LTI)
systems, Camponogara, Jia, and Krogh (2002) present a distributed
MPC scheme in which each local controller uses the state prediction
of previous instant to approximate the state sequence of current
instant in the procedure of computing an optimal solution. To
improve the efficiency of distributed MPC solution, Li, Zhang, and
Zhu (2005) developed an iterative algorithm for distributed MPC
based on Nash optimality. The whole system will arrive at Nash
equilibrium if the convergence condition of the algorithm is satisfied.
Also, a distributed MPC method with guaranteed feasibility proper-
ties is presented in Venkat, Rawlings, and Wright (2007). However,
as pointed out by the authors Li, Zhang, and Zhu (2005), Venkat,
Hiskens, and Rawlings (2008), Venkat, Rawlings, and Wright (2007)
and Zhang and Li (2007), the performance of the distributed MPC
framework is, in most cases, worse than that of centralized MPC. In
order to guarantee performance improvement and the appropriate
communication burden among subsystems, an extended scheme
based on a so called “neighbourhood optimization” is proposed in
Zhang and Li (2007) for a class of serially connected processes, in
which subsystems are interconnected by inputs. As for the class of
system in which each subsystem interacts with some so called
“neighbouring subsystems” by both their states and their inputs,
Vaccarini, Longhi, and Katebi (2009) presents a decentralized MPC in
which each local controller exchanges information with its neigh-
bours to account for the interactions among subsystems. However,
the optimization in each local controller is to pursue the performance
of local subsystem. Camponogara, Jia, and Krogh (2002) presents a
method to improve global optimality, while it is based on global
information. Thus, how to improve the global performance using
appropriate network resources is still a problem for this class of large
scale system.

In this paper, a novel distributed MPC based on neighbourhood
optimization for the large scale system mentioned above is
developed, in which the optimization objective of each subsys-
tem-based MPC considers not only the performance of local
subsystem corresponding but also those of its neighbors. In the
optimization, each local controller takes into account not only the
impacts coming from its neighbors but also the impacts applied to
its neighbors for improving global performance. The closed-loop
stability analysis is also provided for guiding local MPCs tuning.
Moreover, the performance of closed-loop system using proposed
distributed MPC is analyzed and the application to accelerated
cooling and controlled (ACC) process is presented to validate the
efficiency of this method.

The contents are organized as follows. Section 2 describes the
problem to be solved. Section 3 presents the proposed neighbour-
hood-optimization based distributed MPC, and gives its closed-
form solution. Section 4 provides the stability condition of closed-
loop system. Section 5 discusses the performance of proposed
distributed MPC. The experiments of applying proposed distrib-
uted MPC to ACC test rig are presented in Section 6. Finally, a brief
conclusion is drawn to summarize the study.

2. Problem description
2.1. System
For a class of large scale system with hundreds or thousands of

inputs and outputs variables (e.g. Power and energy network,
large chemical processes), since the centralized control is

forbidden for the scale of system or the less flexibility when
some errors occurred in one or several subsystems, the distrib-
uted framework is usually adopted in spite of the losing global
performance. As shown in Fig. 1, the whole system is properly
partitioned into several interconnected subsystems. Each subsys-
tem is controlled by a local controller and these local controllers
are interconnected by network. Although the problem of dividing
system has been referred to in literatures, it is still not system-
atically solved (Bakule, 2008; Scattolini, 2009). In some cases,
partitioning is natural in view of the process layout, see for
example Rawlings and Stewart (2008) where chemical plants
are considered. In other cases, the partitioning can be made by
some mathematical methodologies (Niederlinski, 1971; Van
Henten & Bontsema, 2009). In this paper, the system which
has been natural partitioned in view of process layout is
considered.

Without losing generality, suppose that the whole system is
composed of n linear, discrete-time subsystems S;i=1,2,...,n,
and each subsystem interacts with each other by both inputs
and states, the state-space model of subsystem S; can be
expressed as

n n
X,'(k—I— 1) = Aiixi(k) +B,‘,‘Lli(k) + Z Ainj(k) + Z BijUj(k)
J=1G#1D J=1G#0

n
Yi(k) = Cixi(k)+ Z Ciix;(k) M
J=T1G=
where vectors X; € R™i,u; e R™ and y;e R™ are the local state,
control input and output vectors, respectively. When at least one
of matrices Ay,B;;,Cyis not null, it is said that S; interacts with S;.
The whole system can be expressed as

x(k+1) = Ax(k)+Bu(k)
y(k) = Cx(k) 2)

where xe R™,ueR™ and yeR"™, are state, control input and
output vectors, respectively. The control objective of this system
is minimizing a global performance index J(k) at time k, and

n

P M
J =313 [yitk+D-yk+Dg+ D [Amtk+ =Dz | 3)
I1=1

i=1L=1

where Q; and R; are weight matrices, P,M e N are predictive
horizon and control horizon, respectively, and P> M, yf is the
set-point of subsystem S;, Au;(k)=u;(k)—Au;(k—1) is the input
increment vector of subsystem S;.

Moreover, in many situations, the communication resources
are not unlimited for the safety reason and communication band-
width limitation, or the global information is unavailable to every
subsystem due to the physical or man-made reasons. Those
require a simple structure of local controller. Thus, as pointed
out in Scattolini (2009), how to improve the performance of entire

~ = i " Network
......... o] =
| | | | | | | | | i Local
C1 Cc2 C3 Cc4 Cn i Controllers
-~ H

v~

< Plant
—Y K
S4 .- Subsystems

Fig. 1. The structure of distributed system and distributed control framework.
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system is still a challenge for this class of system under the
distributed control framework with simply control structure.

2.2. Existing methods

There are two classes of distributed MPCs appeared in litera-
tures for the large scale systems described above.

(A) Distributed algorithms where each local controller minimize
following local optimization objective:

P M
Jitky = ; Hyi(k+l)*yid(k+l)”éi+ ; HAu(kH—l)Hii

When computing optimal solution, each local controller
exchanges estimation states with its neighbours, therefore
improves the performance of closed-loop subsystem. How-
ever the performance of other subsystems is not considered
in this optimization.

Distributed algorithms where each local controller minimizes
a global cost function

(B

~

Jao=">"Jitk)

i=1

This strategy could achieve a good performance closing to the
centralized MPC. However, this strategy requires much more
communication resources and the structure of controller is
relatively complex.

In this paper a method based on neighbourhood optimization is
proposed for the large scale system in which each subsystem
interacts with each other by both inputs and states. The goal of
it is to achieve a significantly improving performance of entire
system with little increasing of the network resources.

Table 1
Notations used in this paper.

3. Neighbourhood-optimization distributed MPC (ND-MPC)

The proposed control architecture is based on a set of inde-
pendent MPC controllers C;, i=1,2,...,n, for each subsystem S;.
Each controller could exchange information with its neighbours
through network. To discuss the control methodology proposed in
this paper, the simplifying hypothesis of accessible local states
x;(k) and Assumption 1 are considered. Moreover, Definition 1 and
notations listed in Table 1 are defined to describe the proposed
methodology clearly.

Assumption 1.

(a) Controllers are synchronous;

(b) Controllers communicate only once within a sampling time
interval;

(c) Communication cannel introduces a delay of a single sam-
pling time interval.

This set of assumptions is not restrictive. The controllers are
synchronous and are not so strong because the sampling interval
is usually rather long compared to the computational time in
process control. The assumption (b) of single information
exchange with a sampling time interval is due to the necessity
of minimizing the amount of data exchange through the network.
In real situations an instantaneous data transfer is not possible;
therefore assumption (c) of unit delay is required.

Definitions 1. Neighbouring subsystem: subsystem S; interacts
with S;, and the states, outputs of subsystem S; are affected by
subsystem S;. In this case §; is called input neighbouring sub-
system of S; and S; is called the output neighbouring subsystem
of S;. §; and S; are said neighbouring subsystems or neighbours.

Notations Explanations

x([h), g, |,

The predictions of x;(l) and y;(I) computed at time h, and Lhe N, h<1;

Au;(l|h), ui(I|h) The input u;()) and the input increment Au;(l) computed by controller ¢; at time h, Lhe N and h <1;

Xl (O and ity =y () ¥ - ¥ 0O, mis the

yid|h The set-point of y;(I|h);
Ri(k), y;(k), The state and output vectors of the output neighbourhood of S;. ®;(k) = [/ (k) X (k)
number of the output-neighbours of S;;
wi(k), v;(k) The interactions act on the state and output of output-neighbourhood of S;. See Egs. (9) and (10);
ﬁi(l\h),?hi(l\h) The predictions of X;(l) and ¥;(I) computed at time h, Lhe N and h<1;

@i(l\h),ﬁi(l\h) The estimations of w;(l) and V;(l) computed at time h, Lhe N and h<1;

’yf(”h) The set-point of y;(l|h);

UiLp|h) A complete input vector, U;(l,p|h) = [u] (|h) ul(+1|h) ul(I4+p|W", p, LheN and h<1;
AU;(Lp|h) Input increment sequence vector, AU;(,p|h)=[Au](|h) Aul(+1[h) Aul(I+p|W), h<l;
ud.plh A complete stacked input vector, U(l,p|h)=[ #1(|h) uf(I|h) ul(+plh uf(l+plhy;
Xi(Lp|h A stacked distributed state vector, X;(,p|h) = [& (|h) X[ (I+1[h) Xl (+p|)T;

X(,p|h) A complete stacked state vector, X(,p|h) = [ %1 (|h) X d|h & (+plh & (+plh T,
)A(i(l,p\h) A stacked state vector, )A(i(l,p\h): [’;A}'.T(I\h)';?,-T(l—o—l [hy-- <’§i1(l+p\h)]7, p,LheN and h<I;

‘A(f(l,p\h) A stacked output vector, T}i(l,p\h) = ff(l\h)fj(l+l |hy-- ?AiT(l+p\h)]T, p,LheNand h<I;

??(l,p\h) The set-point ofTA/,-(l,p\h);

VAVi(l'PU‘l) A stacked interaction vector, [ﬁ;?(l\h)ﬁ/:(H] [hy-- -@?(Hp\h)]r, p, LheNand h<[;

ﬁ(l,P\h) A stacked interaction vector, [y I.T(l\h)?AiT(lJr] [hy-- ~TA/,.T(l+p\h)]T, p,LheNand h<I;

X=(plh A complete stacked state vector, X = (,p|h)=[X](p/h) --- XLdp/W];

U=(p|h A complete stacked state vector, U = (I,p|h) = [U](Lp|h) U= Idp/m7.
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Neighbourhood of a subsystem: the input (output)-neighbourhood
NP of subsystem S; is the set of all its input (output)-
neighbours

Ni»" = {S;,8;j|S; is an input neighbour of S;}

N =(S;,8|S; is an output neighbour of S}
The neighbourhood A; of subsystem S; is the set of all its

neighbours

Ni=NTUNE,

3.1. ND-MPC formulation

3.1.1. Performance index

For the large scale system considered in this paper, the global
performance index (3) can be decomposed in terms of the local
index J; for each subsystem S;, i =1,2,...,n (Katebi & Johnson, 1997)

P
Jidl=">"

I=1

M
Fik+1ll-ydk+1ll) g, + > |Awk+I-1]k) [z )
=1

The local control decision of S; is computed by solving the
optimization problem minayum/i(k) with local input/output vari-
ables and constraints in the distributed MPC based on the state (or
input) estimations of neighbors at time k—1 (Vaccarini, Longhi, &
Katebi, 2009) or Nash optimality (Li, Zhang, & Zhu, 2005). The method
present in Vaccarini, Longhi, and Katebi (2009) adopts this local index.

However, since the state evolution of output-neighbours of
subsystem S; is affected by the control decision of subsystem
S;, see Eq. (1), the performance of these neighbours may be
destroyed by improper control decision of S; in some cases. To
solve this problem, the so called “Neighbourhood optimization”
(Zhang & Li, 2007; Zheng, Li, & Wang, 2009) is adopted and the
performance index is expressed as

P
Jio="3" Jity="3" |3 [k+1k)-yick+ 1k g,

je Niom je .,”\/?Ut =1
M 2

+ > [ Auk+=1[k & (5)
=1 ’

Since Auwj(k+1-1|k) (jeN{T"j#il=1,.,M) is unknown and
independent to the control decision of &;, Auj(k+I1-1[k—1) is
used to approximate Auj(k+I1—1|k). Then, Eq. (5) becomes

P
Jido=>">"

jenouwi=1

M
+ Y Z\\Aui(k+l—1\l<—1)|\,2,i

JeNtj#il=1

S

jenouwi=1

M
Fitk+1[ -y e+1[k) g+ > | Auik+1=1]k) g,
I=1

J}j(k+l|k)—y]’»i(k+l\k)Héj

M
+ > || Auitk+1-11k) Hf{i +Constant
=1

For simplifying reason, redefine J;(k) as

P . M
Jido="Y" [k +1[k-yidke+1k) g + > |Awk+1-1]b)]z  (6)
=1 =1

where Q; = diag(Q;,Q;, . . . Q;,)-

The optimization index J;(k) considers not only the perfor-
mance of subsystem S; but also that of the output-neighbours of

S;. The impacts of the control decision of S; to S; e N are fully

considered in the neighbourhood optimization, and therefore the
global performance improving is guaranteed. It should be noticed
that the global performance may be farther improved if using the
optimization objective (3) in each subsystem, but it requires a
high quality and complicated network communication and intro-
duces more complex computation.

3.1.2. Prediction model

Since the state evolution of S;e NT"" is affected by u;(k), to
improve the predictive precision, subsystem S; and its output-
neighbours should be considered as one relatively large integral
subsystem when predicting the future states of S; and its output-
neighbours. Assume that the number of output neighbours of S; is
m, then the state evolution model of the output-neighbourhood of
S; can be easily deduced by Eq. (2) and expressed as

Ri(k+1) =ARi(k)+ Bitti(k) + Wi(k) @
¥i(k) = Cixi(k) +vi(k)
where
A A Aii, B;;
A Pii(l) /A;z)] A:i,i iAi:]i, Ai,:nim ‘ ,Ei _ Bfli '
Aii A, A, B;mi
G Gy, - G,
_ C.. Ci.; Cii.
Ci= f” i n 8)
Ci.i GCi,, Civin
Zje/\":-",j;é IBUUJ(I<)+0
Z-e n i B juj(k)"’_z'e/\/i“ ; NuutAi ij(k)
wik) = JeNy I N RN )
et jp iBinihi(R 305 g jopourAin X (K)
0
_ 2j e arn jenra Ci,jxi(k)
vi(k)= : (10)

Zj N N G;,.ixj(k)
m

It should be noticed that the input of this neighbourhood
model is still the input of S;, and the inputs of S;e N7™,j # i are
regarded as disturbances. It is because that each local MPC can
only determine the manipulated variables of the corresponding
subsystem.

Due to the unit delay introduced by the network (see
Assumption 1), the information of other subsystems is available
only after one sampling time interval. Therefore controller C; uses
Wwi(k+1-s|k—1)) and Vi(k+I|k—1) computed on the basis of
information related to time k—1 to estimate the interactions,
and the initial states of output-neighbours are substituted with
&iTh(k\k—l) (h=1,...,m). Fori=1,...,n, define
Rkl =[xkl & (k[ k=1) &{m(k\k—l)r an

Then the states and outputs of the output-neighbourhood in
[-step ahead can be predicted by

I i R
% k1l =AR(k[lo+ S A, Bian(k-+ s+ Zﬁf’lwimz_s\k-& )2))
=1

s= s=1

Vitk+1]ky = CRi(k+ 1) +Vi(ke+ 1| k—1)
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3.1.3. Optimization problem

For each independent controller C;, i=1,...,n, the uncon-
strained ND-MPC problem with prediction horizon P and control
horizon M, M < P, at time k becomes to solve following optimiza-
tion problem

min_J;(k) =

.
Vik+1| k) -y k-+11k) |2
pimin Jid) =3 [yilke+1lk-yide+ 1o,

I=1

M
+ 3 |Auk+1-1[k)|f st Eq. (12) (13)
I=1

At time k, the interaction predictions @i(l<+l—l\k—1) and
Vi(k+1|k—1), together with®;(k|k) are used to resolve the optimi-
zation problem (13) in each C;, (i=1,...,n). The first element of
the optimal solution AUj(k) is selected and u;(k)=u;(k—1)+
Au(k|k) is applied to S;. Then, by Eq. (12), each local controller
estimates the future state trajectory over the prediction horizon
and broadcasts it in network together with the optimal control
sequence over the control horizon. At time k+1, each local
controller uses this information for evaluating the interaction
predictions and the whole procedure is repeated.

The only information that each C;, i=1,...,n, needs is the
future behaviour of S;eN; and Sg e Vj. Similarly, C; broadcasts

761

where A;j, Bjjand C;; are zero blocks of congruent dimensions if
SigN (Sp e N?™). Moreover define

Onvi—1yn,xn, Im—1yn,
n ~. on x(M—-1)n, Irzu ~ T o~
ny=Y ny, = """ : , B;=Bi:Il' (18)
I=1 : :
on,,x(M—l)nu Inu

Then, following Lemmas can be deduced based on definitions
(14)-(18). Proofs of the lemmas can be found in Appendixes.

Lemma 1 (Interaction prediction). Under Assumptions 1, for
each controller C;, i=1,...,n, the stacked predictions of the interac-
tion vectors at time k, based on the information computed at time
k—1, are given by

W, (k,P|k=1) = Ay X(k,P

f/,»(k,P|k—1) =C;X(k,P

k=1+B;U(k—1,M|k—-1),

(19

k—1).

Lemma 2 (State prediction). Under Assumptions 1, for each
controller C;, i=1,...,n, the stacked predictions of state and output
of the output-neighbourhood of subsystem S; at time k are expressed

by

the future behaviour of S; to the controller of S;eN; and A <rals B A%
controller of Sg EN_,‘. ! J ! X; (k+1,P k) :S,‘[Ai X(k‘k)—l—B,‘U,‘(k,M“() +A,‘X(k,P k—l)
+B;U(k—1,M|k-1)], (20
3.2. Closed-form solution Y(k+1,P|k)=CX;(k+1,P|k)+T,C:X(k+1,P|k—1).
. . . . where
The main result of this subsection is the computation of the
closed-form solution to the ND-MPC proposed. For this purpose, .=, ﬁﬁ” ﬁl‘,z’
expressions of the interaction prediction and the state prediction A= [Ai A; ] “lo 0 ’
. Pr; xny, P x (1. —ny.)
are provided first. Define that o e
Aia Aiicr Ongun, A Aii-1 Ongsny, Ay 41 Aiip-1 Ongxn,  Aiiyr1 Ay
A1) = diagy Ai:],l Ahzi—l Onx,]:xnx, Ail,:i+1 An,}',q Onx”:xnx” Ail,z;1+1 Ail,z:,,.—l Onxnvxnxlm Ai1,if"+1 Aij,n (14)
A, 1 Aiic1 On ny A A i1 Ong xng Ay 1 Aiin1 Ong g Aiin+1 Ajn
n columns
[ onx‘ XNy Oﬂx, XNy Ai,i1 onx‘ XMy, onx] XNy Ai,i,,, onx] XM Onxl X1y
~ on,(v XMy onx. XMy, Ail iy onx. X1y, on,(v XMy, Aili onx XMy, onx,xnx
A(2 :d- 11' x i1 ) i1-1 " il X i1+1 i1 X im-1 "’" i1 . im+1 i n , d . 0 n 15
! ) 198 N N N : 1agp-1 ZI;A‘(""”"IXZI: 1My ( )
O"va XMy 0"*1‘1 XMy Ai""i' 0”*1‘1 Mg 1 0”le XMim_q Ai""im 0”*:1 XM 1.4 0"*/ XMy
n columns
[ Bi1 B 1 Onxn, Biiia B;,
B, — diag, Bi:l,l Bil;H oﬂx“:xﬂui Bil,.i+1 Bi},n 16)
B;, .1 B, i1 O n, Bi,ii1 Bi,n
Ci1 Gt Onxn,  GCiiga Cii-1 Onyxny,  Ciy 41 Ciin1 Onyxny,,  Ciip1 Cin
¢ — diags Ci:l,l Ci1,:i—1 Ony“.xnxl Cil,.i+l Ci,,;}—l Ony“'xn,(n Cim‘j 41 - C,»lv,;m_l 0, :anm Cil,i:“+l C,-}'n a7
Ci,n Cinic1 On, xn, Cipit1 Cinir-1 Ony xng Cinipv1 o Ciginmt Ony sy Gy 11 Cipn

n columns
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daigm(B)
T _O(P—l)n;,xny I(P—l)ny i E on;ix(M—Un“'. Bi
i= y NMx= Ny, i = :
_omy x(P-Tyn I, = I
On;ix(M—l)n,‘[. Bi
r 0
; 0
Si=| .|, Ci=diagp{Cy}.
—~P-1 —~0
A ... A

The ND-MPC problem stated in Eq. (13) now can be formulated as
a quadratic program by the introduction of the following matrices:

Si = figiv Ni = SiB,‘Ti,
I, L, - 0
o= S T; =1 - S,
(M blocks) Iﬂui (MxM blocks) Inu, . Iﬂui
Q; = diage(Q;},
R; = diagp{R;}. 21

Lemma 3 (Quadratic program). Under Assumptions 1, each con-
troller C;, i=1,...,n, has to solve at time k the following optimization
problem:

min _[AU] (k,M|kH;AU;(k,M|k)—G(k+1,P
AU;(k,M|k)

AU (kM|k)]  (22)

where the positive definite matrix H; has the form

H;=N{QN;+R; 23)

and

Gi(k+1,P|k) =2NTQ,[Y4(k+1,P|k)—Z;(k+1,P|k)] (24)

with

Zi(k+1,P|k) =Si[ﬁif,fui(lc—l)+§$1)$<(k\I<)+A,f((k,P k—1)
+BU(k—1,M|k—1)]+T;C;X(k+1,P|k—1) (25)

Making use of these definitions
K.=T'K, TIi= [Inl,i 0y, v, ] K.=H'N'Q, (26)

The proof can be found in Appendix C. Based on Lemma 3, the
following theorem can be deduced.

Theorem 1 (Closed-form solution). Under Assumptions 1, for
each controller C;, i=1,...,n, the closed-form of the control law
applied at time k at controller C; to subsystem S; is given by

u;i(k) = u(k—1)+ K;[Y%(k+1,P|k)—Z;(k+1,P

9] 27
The proof can be found in Appendix D.

Remark. The resulting complexity to obtain the closed-form
solution for the local subsystem S; is mainly given by the
inversion of matrix H;. Considering that the size of matrix H;
equals M-n,, the complexity of the inversion algorithm is
O(M3,n31) if using Gauss—Jordan algorithm. Therefore, the total
computational complexity of the distributed solution is
OM3, y>_ n3 ) while the computational complexity of the cen-
tralized MPC is O(M?,(X0'_ 1 nu)?).

4. Stability analysis

On the basis of the closed-form solution stated by Theorem 1,
the closed-loop dynamics can be specified and the stability
condition can be verified by analyzing the closed-loop dynamic
matrix. Thus, following theorem is obtained.

Theorem 2 (Neighbourhood-optimization distributed MPC sta-
bility). The closed-loop system given by the feedback connection of
plant S with the set of independent controller C;, i=1,...,n, whose
closed-form control laws are given by Eq. (28), is asymptotically
stable if and only if

M’]{AN}‘ <],Vj=],...,nN (28)

where ny = Pny+ny+2Mn, is the order of the global closed-loop
system.

A 0 BI 0
LSA LSAQ LSB LSBIT

A= 0A+PISA ®ISAQ OBr+oISB+¥ &S| 22
0 0 I, 0

The proof can be found in Appendix E.

Remark. It should be noticed that the first two block rows of
dynamic matrix Ay depend on element of matrix A (the first two
block columns) and element of matrix B (in the last two block
columns), while the third block row depends on process matrices
A, B and C, weight matrices Q;, R; and horizons P and M. This fact
suggests a key for the design of ND-MPC. The degree of freedom
available to the designer are on the choices of weight matrices Q;,
R; and horizons P and M, which introduce significant modifica-
tions on the third block row of matrix An.

5. Analysis of performance

To explain the essential differences between the optimization
problem with neighbourhood optimization index and the optimi-
zation problem with local performance index, for each controller
Ci, i=1,...,n, the optimization problem (13) of ND-MPC is
rewritten into following form:

n P M
. o 4 2 . _ 2
AJmin k)Z > |yitk+1]k)-y; (k+l|k)HQI+; | Aui(k+1-1 k)| 7,

i=11L=1

Xi(k+1+1]k) Ai Ay - Ay, xi(k+1[k)

X (k+1+1|k) Ay Ay Aii, || ®i (k+1]k)

X (k+1+1]k) Aii Aiiy o Ay | | R (k)
B;

iyi

B R
+| |+ k) +Wik+ 1] k—1));
B;, ;i
Xi(k+1+1[k) = Zi(k+1+1|k—=1), (&NTY);

Yitk+1lk) = Cix(k+1k)+Vi(k+1k—1), (i=1,...n);
Auj(k+1-1[k) = Au;(k+1-1]k—1), (G #i). (30)

If using the local performance index (4), as in Vaccarini,
Longhi, and Katebi (2009), for each controller C;, i=1,...,n, the
optimization problem of distributed MPC can be written into
following form:

n P

ain >

j=1li=1

M
Fitk+1[k-yde+1k) g + > [Auwk+1-1[k) [
I=1
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S.t. 5{,‘(’(+l+] ‘k) =A,~,x,»(k+l\k)+Biiui(k+l|lc)+1/”v,»(k+l\kfl));

Pilke+1]k) = Cixithe+ 1 k) +Vi(k+1|k—1);
yitk+1lk) =y;(k+1k=1) (i)

Aui(le+1-1[ky = Auj(k+1-1|k=1)  ( #i). 31

It can be seen that the performance indices of problem (30)
and (31) are same to each other. In neighbourhood optimization,
the state evolutions of subsystem S; and its output-neighbours
are solved together, the impact of control decision AU;(k,M|k) on
the states of S; and its output-neighbours is fully considered.
However in problem (31), only the state evolution of subsystem
S; is determined by AU;(k,M|k) and the states of other subsystems
are substituted by the estimations at time k— 1. It is clearly that
the predictive model in problem (30) is more close to system
model (2). Thus, it is more reasonable to adopt neighbourhood
performance index rather than to use local performance index.

In fact, after several control periods, the control decision
AU;(k,M|k) affects not only the output-neighbours of S; but also
other subsystems (e.g. the output-neighbours of the output-
neighbours of S;). Here, the interactions with other subsystems
except output-neighbours are neglected. If there is enough net-
work band-width for employing iterative algorithm, these inter-
actions can also be taken into account.

It should be noticed that each controller only communicates
with its neighbours and its neighbours’ neighbours in ND-MPC.
Moreover, if each controller communicates with its neighbours
twice within a sampling time interval, the information of its
neighbours’ neighbours can be obtained from its neighbours. That
means only the information exchanging among neighbourhood is
required using this method. Thus, if one subsystem fails, the other
subsystem unrelated to S; can be run normally. The communica-
tion loads related to S; are that S; get its future states to its
neighbours and sent its neighbour’s states and inputs to its
neighbours. That means the maximum communication loads is

i m; (an,- +> anj)

i=1 JeN;

(32)

In Eq. (32) some information are calculated repeatedly, thus
(32) is the maximum communication burden using ND-MPC. The
required physical connections equals to the number of none zero
elements in A subtract the rank of A.

Since the computational burden mainly comes from the
complexity of the inversion algorithm, see remark in Section 3,

x
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the computational burden is similar to (a little more than) that of
the method proposed in Vaccarini, Longhi, and Katebi (2009). The
memory required is a little larger than that in Vaccarini, Longhi,
and Katebi (2009) since the system matrices dimension of each
subsystem’s states evolution equation is larger than that in
Vaccarini, Longhi, and Katebi (2009). However the memory is
not a problem with the modern computer technology. The
efficiency of this method will be validated in next section.

6. Experiment validation

To illustrate the performance of proposed method, application
of this method to accelerated cooling process (ACC) test rig is
performed in one steel company in Shanghai, China.

6.1. Process description

ACC process, simplified in Fig. 2, is used to cool a metal plate
from initial temperature around 750-800 °C down to final tem-
perature in the range of 450-560 °C. A constant cooling curve of
plate is required in ACC, which helps a lot to strongly improve the
mechanical characteristics of the corresponding products. The
cooling area is partitioned into three sections: air cooling section,
water cooling section and re-reddening section, labelled A, B and
C, respectively. Fifteen cooling header units are uniformly spaced
along section B. The number of cooling header units in operation
(N), the water flux of each cooling unit (F) can be adjusted
separately. The temperature drop is caused by the heat radiation
in sections A and C, and caused by both radiation and water
cooling in section B (Guan, Wang, & Chai, 1998; Mukhopadhyay &
Sikdar, 2005). Four pyrometers Tp; ~Tps are located in the
positions of 13.5, 58.6, 89m and 109.5 m, respectively. The
temperatures of plate inside cooling section are measured by
soft-sensors.

The control objective is to control the location-dependent
temperatures at location [,l,...,l; to be consistent with the

T
i
through adjusting the flux of each water cooling header unit
and plate velocity. (lp is the location of Tp;; I;, i=1,2,...,15, is the

entry of ith cooling header unit; [,,_, is the exit of section B; and I,
is the location of Tps.)

reference temperature denoted with yd= [y‘{ ¥4

». y{lj yg yd d
*5 i :3 y d Desired cooling curve
8 d
g : . Yn-1 yi,{
[q—) I S N I
o I Ll L Iy L lot 1, Position /
Entry cooonbBhooooe Pt thiCknessExit
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L . 518,838, Open dynamic system I" S-1Sn
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Fig. 2. ACC process for middle and heavy plate.
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6.2. Test rig and control system

The test rig and the automation system structure of the test rig
is show in Fig. 3. The automation system consists of six industrial
personal computers (IPC), one PLC, and many I/O modules. The
software of WinCC and an OPC sever running on IPC 1 are used to
monitor the cooling process, and the PI controllers running on PLC
are employed to control the water flux. The advanced control
algorithm is running on IPC2-1PC6, which communicate with PLC
through the OPC server running on IPC 1.

6.3. System state space model

Consider the overall system of the cooling area from the point
of view of geometrically distributed setting system, the geome-
trical locations of temperature sensor Tp, and Tps as well as the
plate top and bottom sides represent an open thermodynamic
system I'. The overall system, therefore, can be dismembered into
n subsystems in accordance with the location coordinate . The sth
subsystem ranges from Is_; to [; (s=1,2,...,n) as shown in Fig. 2.
The input of sth subsystem is the water flux of corresponding
header and the output is the plate temperature at location [.

For the numeric treatment of heat conductivity through plate
thickness, the system I' is broken into m layers, and each
subsystem is divided into n; volumes in I-direction. Denote the
temperature of ith in z-direction and jth in [-direction volume
with x%¥ and set the sampling time be At. Then following linear
state space representation of subsystem Ss can be deduced
(Zheng, Li, & Wang, 2009)

X5(k+1) =Ags - Xs(k)+ Bss - us(k) + D5 s_1 - X5_1 (k)
Ys(k) = Css - X5(k)

(33)

where ¥, =[(®s1)]  (Xs2)" R 1T, %o = [ XZD . M7

j=1,2,..,n is the state vector of subsystem S, ys is average
temperature of the last column volumes of subsystem Ss, us is the

input of subsystem Ss and there is a fixed relationship between u;
and the water flux in subsystem S;. As, Bs, Dss—1 and G are
coefficient matrices of subsystem S; with

o4 0 . 0
@. .
Ass = 0 djs 4 )
: . 0
0 0 q;g"sLA
Q53] I 0 e 0
VI A=y
: . : 0
0 Mn (1=
o]
N
B = : , Csszn'r1 : [lern(ns—l) llxm].
l/,("s)
S
Omxm(ns—l) Vlm
Ds,s—l = |:0m(ns—1)><m(ns—1) om(ns—1)xm :|
and
ax@” ... 0
L N
0 e a@mD)
0(1-1‘)(2(1‘1‘)7)( )ﬁ()‘(“"")
S S o0 S
./’g)(xs) — 0(m—2)><1 ;
ngd)(ﬁgm‘})fxw)[)’()?gm']))
1 -2 1 ' :
A= 0 - ’ o0 ;s
: 1 -2 1
0 0 1 -1
b [ rciwinca | [wea][wes] ... [rwce]
TCP/IP
S e e (e e E)
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Fig. 4. Control strategy of ACC.
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00 = @D /x)%,  seCy

(i, 5 (ij
()s ) = hair(xg ]))v Se CA

Iy, e R™™; {

a(x{P) = — AL (AZ p{ D)) (X)),
BEIDY = Ata(xi)) / 1(x0D)
VY= AW/A[. i= 1,2,. ..,m, _] = 1,2,. .o

us =2186.7 x 107° x a(v/vo)? x (Fs/Fo)’, seCw

us=1, seCy

where Al and Az are the longitude and thickness of each volume, p is
the plate density, ¢, is the specific heat capacity, A is the heat

conductivity, v is the plate velocity and )'cgi'j) is the equilibrium state
of Ss. Cyy is the set of subsystems, in which plate is cooled by water.
C4 is the set of subsystems in which plate is cooled major through
radiation, Fs is the water flux of the header unit in Ss, Fo, Vo, a, b and ¢
are constants, and their detailed definitions are available in Zheng,
Li, and Wang (2009, 2010). The different value of p, ¢, and A with
different steel temperature can be also found in Zheng, Li, and Wang
(2010).

6.4. Control strategy
With the development of computer technologies and control
theory, many advanced control methodologies have been success-

fully applied to complex metallurgical processes (Jin, Zhou, &

Table 2
The plate parameters and the operating points.

Item Value
Thickness of plate 19.28 mm
Length of plate 25m
Environment temperature 25°C
Starting temperature 750-800 °C
Desired final temperature 510-550 °C
Average velocity of plate 1.6 m/s
Number of header opened 12
Sampling period 0.37s
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Chang, 2008; Tang, Wang, & Liu, 2008; Wang, Wu, & Chai, 2004;
Zhou, Chai, & Wang, 2009). As for ACC process, the proposed
ND-MPC is adopted in this work. As shown in Fig. 4, each
subsystem is controlled by a local MPC. As for the subsystems
in which the corresponding cooling water header unit is closed,
the local MPC is substituted with a predictor. The predictor
estimates the future states of corresponding subsystem and
broadcasts the estimations to its neighbours.

6.5. Performance of system

One X70 pipe steel plate is taken as an example. The para-
meters of this steel plate are listed in Table 2. And the equili-
briums temperature of this plate is shown in Fig. 5.

Set both the prediction horizon (P) and control horizon (M) of
each local MPC equal to 10. And set the weights of outputs and
inputs equal to 1 in the optimization index. Set the starting
cooling temperature (Tpy) in whole process be 780 °C. The result-
ing performance of closed-loop system using centralized MPC,
ND-MPC and networked decentralized MPC described in
Vaccarini, Longhi, and Katebi (2009) are presented in Fig. 6, and
the corresponding manipulated variables (unit: 1 m~2 min~!) are
shown in Fig. 3.

It can is observed from Figs. 6 and 7 that the performance of
closed-loop system using ND-MPC is improved significantly
comparing with that using the networked decentralized MPC
proposed in Vaccarini, Longhi, and Katebi (2009). Both the control
decision and performance of closed-loop system using ND-MPC
are very close to those using centralized MPC. Furthermore, there
is less computation demand using the ND-MPC than using
centralized MPC. Thus, the ND-MPC is an effective method which
could guarantee global performance improvement with fast
computational speed and less communication burden.

7. Conclusions

In this paper, the control for a class of large scale system which
is naturally divided into many small scale interacting subsystems
is discussed. A novel distributed MPC framework based on
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Fig. 5. Equilibriums of states of entire system.
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neighbourhood optimization is present and the condition of
closed-loop stability is given for local MPCs tuning. In the
procedure of resolving optimal solution, each subsystem only
communicates with its neighbours, which is rather easy to fulfil
the network requirements. Moreover, the discussion of the
performance of proposed methodology and the application of
ND-MPC to ACC test rig prove that the proposed method guaran-
tees an improving performance of entire system with relative
relaxed communication requirements. Further investigation will
focus on designing stable distributed MPC with constraints and
global performance improvement for this class of large scale
systems.
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Appendix A. Proof of Lemma 1

The proof is stated by writing, for i=1,...,n, the h-ahead
predictions at time k based on the information computed at time
k-1 of the interaction vectors (9) and (10) and by representing
them in a stacked form for h=1,...,P. The last P-M—1 samples of
i=1,2,...,n),
that are not contained in Uj(k—1,M|k—1), are assumed equal to
the last element of Uj(k—1,M|k—1). By definitions (14)-(18) and
Table 1, this implies that relations (19) hold.

Appendix B. Proof of Lemma 2

By Egs. (11) and (12), and imposing that u;(k+P—1|k)=
u(k+P-2|k)= --- =u(k+M|k) = uj(k+M-1|k) and ’\A7,'(k+P\k—1):
Vi(k+P—1|k—1), also substituting W;(k,p|k—1) and V;(k,p|k—1)
with their explicit expressions (19), it results the following
stacked state prediction for controller C;:
= Si[AXi(k|k)+BiU;(k,M| k) + A X

+B;U(k—1,M|k—1)].

N A A T
Let %;(k|k—1) = [x: (k|k=1) X,-Tmi(’<|k—1)] , and by defini-
tions (8), (14) and (15), the above equation becomes
_Si[ﬁﬁ”&(k\k)+Z§2*§z§.(1<\1<—1)+E,-Ui(k,1v1\k)
—1,M|k—1)]

=5 A x(k\k)+B Uik, M\k)+(A<1)+A
+B;Uk—1,M|k—1)]
=S,[A"x(k|k)+ BU;

+B,U(k—1,M\k—1)]

-1

By model (7) and definitions of the coefficients in (20), the
stacked output prediction for controller C; can be expressed as

This proves the Lemma 2.

Appendix C. Proof of Lemma 3

Making use of stacked vectors and definitions (21), the cost
function (6) to be minimized by controller C; can be expressed in
the equivalent form

Ji= ¥,

2 AUk M|z

The stacked local output prediction Y;
of the control action, therefore, in order to express J; as a function
of the control sequence AU;(k,M|k), an explicit expression for
such a prediction is needed. Considering that u;(k+h|k)=
uik—1)+ 3P _ o Auik+r|k), h=1,2,...,M, the local stacked con-
trol sequence U;(k,M|k) is used together with (20) and (21) to

obtain the output prediction in the form ?i(k+1,P|k)=
N;AU;
local cost function J; takes the form (22). The positive definiteness

of matrices Q; and R; implies the same property for matrix H;.

In this way the ND-MPC problem has been transformed into an
equivalent unconstrained QP problem which has to be locally
solved online at each sampling instant.

Appendix D. Proof of Theorm 1

States that a solution to ND-MPC problem minimizes cost
function (22) with respect to the control sequence AU;(k,M k).
This solution has the form AU,»(k,M\k):((1/2)Hflci(l<+1,P|l<)).
Following the receding horizon strategy, only the first element of
the optimal sequence is actually applied to the process and the
control action is expressed as wu;(k)=u;(k—1)+I;AU;(k,M|k)
which gives the final closed-form (27).

Appendix E. Proof of Theorm 2

To simplify the process of stability proof, define that

o=|a o' o =diagi2y...2y).
Qij:[onxixu—lmxi I, Onxxw—mx,], (i=1,..n, j=1,...P);
(D.1)
n=|1 m, ], 1 =diag(ly;... 1),
Hij:[onuixamnui L, Oy .m m,] (=1,...n, j=1,..M).
(D.2)
The following equations are achieved:
-1 (D.3)
Uk,M|k—1)= IIU(k,M|k—1) (D.4)
Define
A=diag(Ay,...An): A=[AT... Al| :B=diag(Bi...Bu):
B=[B]... B|": L=diaglL.. . Ly
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L; :diagp{ [Inxi Onx,-x(n;lnx,)]}; S =diag(S:,....Su}: (D.5)

Then, for each controller C;, i=1,...,n, by Lemma 2 and
definitions (D.5), the stacked distributed state prediction at time
k are expressed by
X,’(k‘.‘ 1,P‘ k) = L;i,(k-’— 1 ,P‘ k) = LS]-[ZH )A((k ‘ k) +§l—Ui(k,M\ k)

+AX(k,P|k—1)+B;U(k—1,M|k—1)]

(D.6)

By definitions (D.5), the completed stacked distributed predic-

tion can be expressed as
X(k+1,P|k) = LS[A%(k| k) + BU(k,M |k)+AX(k,P|k—1)

+BU(k—1,M|k—=1)]

D.7)

Substituting (D.3) and (D.2) into (D.7), the following complete

version of the stacked distributed prediction can be deduced:
X(k+1,P|k) = LS[A&(k|k)+BU(k,M|k)+AQX (k,P|k—1)

+BIUK-1,M|k—1)]

(D.8)

Considering that the local control action applied at time k—1 is
given by u(k—1)=TI;U;(k—1,m|k—1), the open-loop optimal
sequence U;(k,M|k) of controller ¢; at time k can be expressed
as  Uik,M|k)=I';TU;(k—1,M|k—1)+T;AU(k,M|k). Then by
Eqgs. (26) and (28), the stacked open-loop optimal control
sequence at time k can be directly expressed as

k)—Z;(k+1,P|k)]
k)—Si[B;I"uj(k—1)

Ui(k,M|k—1) = [u(k—1)+ T K,[Y(k+1,P
=ujk—1)+TK;{Yd(k+1,P

+ ARk k) +AX(k,P|k—1)+B;U(k—1,M|k—1)]

—T,C X (k,P|k—1)} (D.9)
Define that
I =diag{I'},....I'}}, I =diag(I'y,....I'n},
S =diag{S1,....Sn}, T =diag{T,...,Ta}, (D.10)

E= diag{flk1,. . .,Tan}.

By definitions (D.5) and (D.10), and substituting (D.3) and
(D.4) into (D.9), the completed stacked open-loop optimal
sequence can be expressed as

Uk,M|k) = ['TUk—1,M [k—1)+E{Y*(k+1,P|k)
—S[BI'TU(k—1,M |k—1)+A&(k|k)+AQX (k,P|k—1)
+BITUk—1,M|k—1)]-TCRX(k,P|k—1)} (D.11)
Define
©O=_ESA
d=_ESAQ+TCRD),
Y =I'T-ESBI'T +BII) (D.12)

Then the completed stacked open-loop optimal sequence
(D.11) has the form

k—1)+EY4(k+1,P|k)
(D.13)

Uk,M|k) = PUKk—1,M|k—1)+ Ox(k|k)+ DX (k,P

Therefore, the complete feedback control law computed by all
controllers can be expressed as

u(k)=I'Uk,M|k) (D.14)

Merging the process model (2), the feedback control law
(D.14), the global prediction equation given by (36) and the
controller equation given by (D.13), the closed-loop state-space

representation for the distributed case is derived

x(k) = Ax(k—1)+BIr'U(k—1,M|k—1)

X(k,P|k—1) = LS[A%(k—1)+AR2X(k—1,P|k—2)+BU(k—1,M|k—1)

+BIUKk-2,M|k-2)]

U(k,M|k) = @x(k) + ®X(k,P|k—1)+ PU(k—1,M|k—1)

+EY4(k+1,P|k)
= O[Ax(k—1)+BI'U(k—1,M|k—1)]

+ DLS[AX(k—1)+AQX (k—1,P|k—2)
+BU(k—1,M|k—1)+BIU(k-2,M|k—2)]
+PUk—1,M|k=1)+EY(k+1,P|k)

y(k) = Cx(k)

(D.15)
where X(k|k) in Egs. (D.8) and (D.13) has been substituted
with x(k) due to the assumption of fully accessible state.
k—-1)

[UT(k,M\k) [UT(k—l,M\k—l)]T, the closed-loop state-space repre-
sentation has the form

Defining the extended state Xy(k)=[xT(k) XT(kyp

Xn(k) =AnXn(k—1)+ByY%(k+1,p| k) D.16)
y(k) = CnXn(k) ’
where
A 0 BI 0
LSA LSAQ LSB LSBIT
AN=| OA+DISA BISAQ OBI+®PISB+¥ SISBII
0 0 T, 0
(D.17)

Thus Theorm 2 is obtained.
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